Откуда во Вселенной взялось золото? Астрономы полагают, причастны чёрные дыры
Учёные предложили новое объяснение тому, как во Вселенной создаются самые тяжёлые химические элементы.
Напомним, что самые первые и самые лёгкие химические элементы (водород и гелий) возникли во Вселенной спустя несколько десятков минут после Большого взрыва. Также в ничтожных количествах образовались литий, бериллий и бор. Все остальные более тяжёлые химические элементы, как считается, возникли в термоядерных топках первых звёзд.
Но существуют и другие космические процессы, которые ответственны за синтез более тяжёлых элементов (железа, никеля и прочих). Например, взрывы звёзд и столкновения нейтронных звёзд.
Недавно учёные из Германии, Бельгии и Японии предложили ещё один механизм, который объясняет появление самых тяжёлых элементов, таких как золото и уран, в окрестностях чёрных дыр.
Используя компьютерное моделирование, исследователи показали, что синтез тяжёлых элементов типичен для некоторых чёрных дыр, вокруг которых вращается вещество, так называемые аккреционные диски. Это вещество плотное и горячее.
Такая система (чёрная дыра плюс аккреционный диск близ неё) образуется как после слияния двух массивных нейтронных звёзд, так и после коллапса и последующего взрыва вращающейся светила. Раньше последний процесс именовали коллапсар.
Правда, состав таких аккреционных дисков до сих пор толком не изучен. Особенно астрономов интересует ситуация, когда в ходе образования такой пары получается избыток нейтронов.
К слову, большое количество нейтронов является основным требованием для синтеза более тяжёлых химических элементов. В этом случае происходит быстрый захват этих самых нейтронов (или r-процесс) более лёгкими химическими элементами: "поедая нейтроны" последние становятся толще и больше.
В этом процессе ключевую роль играют ещё одни странные частицы — не имеющие массы нейтрино. Они обеспечивают преобразование между протонами и нейтронами.
Не вдаваясь в детали, поясним, что учёные создали и изучили различные сложные компьютерные модели аккреционных дисков при разных скоростях преобразования нейтронов и протонов.
"В нашем исследовании […] мы обнаружили, что при определённых условиях в [аккреционных] дисках образуется большое количество нейтронов. Решающим фактором является общая масса диска", – объясняет доктор Оливер Джаст (Oliver Just).
Как показали компьютерные модели, оптимальная масса аккреционного диска для обильного производства тяжёлых элементов составляет от 0,01 до 0,1 массы Солнца.
Только проблема в том, что астрономы пока не знают, образуются ли (и как часто) такие аккреционные диски в коллапсарах. Необходимых данных категорически не хватает.
Чтобы подтвердить свои гипотезы, физики планируют использовать ускорители следующего поколения, такие как строящийся центр FAIR. В будущем нужные данные с их помощью можно будет собирать с беспрецедентной точностью.
Статья авторов исследования вышла в издании Monthly Notices of the Royal Astronomical Society.
Ранее мы рассказывали о том, как астрономы расшифровали "химический портрет" взорвавшейся звезды и изучили состав и климат "идеальной планеты".
Больше новостей из мира науки вы найдёте в разделе "Наука" на медиаплатформе "Смотрим".